Abstract

Regarding survival and quality of life recent mass casualty incidents again emphasize the importance of early identification of the correct degree of injury/illness to enable prioritization of treatment amongst patients and their transportation to an appropriate hospital. The present study investigated existing triage algorithms in terms of sensitivity (SE) and specificity (SP) as well as its process duration in arelevant emergency patient cohort. In this study 500 consecutive air rescue missions were evaluated by means of standardized patient records. Classification of patients was accomplished by 19emergency physicians. Every case was independently classified by at least 3physicians without considering any triage algorithm. Existing triage algorithms Primary Ranking for Initial Orientation in Emergency Medical Services (PRIOR), modified Simple Triage and Rapid Treatment (mSTaRT), Field Triage Score (FTS), Amberg-Schwandorf Algorithm for Triage (ASAV), Simple Triage and Rapid Treatment (STaRT), Care Flight, and Triage Sieve were additionally carried out computer based on each case, to enable calculation of quality criteria. The analyzed cohort had an age of (mean± SD) 59± 25years, aNACA score of 3.5± 1.1 and consisted of 57% men. On arrival 8patients were deceased. Consequently, 492 patients were included in the analysis. The distribution of triage categories T1/T2/T3 were 10%/47%/43%, respectively. The highest diagnostic quality was achieved with START, mSTaRT, and ASAV yielding aSE of 78% and aSP ranging from 80-83%. The subgroup of surgical patients reached aSE of 95% and aSP between 85-91%. The newly established algorithm PRIOR exerted aSE of 90% but merely aSP of 54% in the overall cohort thereby consuming the longest time for overall decision. Triage procedures with acceptable diagnostic quality exist to identify the most severely injured. Due to its high rate of false positive results (over-triage) the recently developed PRIOR algorithm will cause overload of available resources for the severely injured within mass casualty incident missions. Non-surgical patients still are poorly identified by the available algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call