Abstract
Current clinical needs require the development and use of rapid and effective diagnostic indicators to accelerate the identification of pneumonia and the process of microbiological diagnosis. MicroRNAs (miRNAs) in extracellular vesicles (EVs) have become attractive candidates for novel biomarkers to evaluate the presence and progress of many diseases. We assessed their performance as biomarkers of pneumonia. Patients were divided into the pneumonia group (with pneumonia) and the control group (without pneumonia). We identified and compared two upregulated miRNAs in EVs derived from bronchoalveolar lavage fluid (BALF-EVs) between the two groups (PmiR–17–5p = 0.009; PmiR–193a–5p = 0.031). Interestingly, in cell-debris pellets and EVs-free supernatants derived from bronchoalveolar lavage fluid (BALF-cell-debris pellets and BALF-EVs-free supernatants), total plasma, and EVs derived from plasma (plasma-EVs), the expression of miR–17–5p and miR–193a–5p showed no difference between pneumonia group and control group. In vitro experiments revealed that miR–17–5p and miR–193a–5p were strikingly upregulated in EVs derived from macrophages stimulated by lipopolysaccharide. MiR–17–5p (area under the curve, AUC: 0.753) and miR–193a–5p (AUC: 0.692) in BALF-EVs are not inferior to procalcitonin (AUC: 0.685) in the diagnosis of pneumonia. Furthermore, miR–17–5p and miR–193a–5p in BALF-EVs had a significantly higher specificity compared to procalcitonin and could be served as a potential diagnostic marker. MiR–17–5p and miR–193a–5p in EVs may be involved in lung inflammation by influencing the forkhead box O (FoxO) signaling pathway and protein processing in endoplasmic reticulum. This study is one of the few studies which focused on the potential diagnostic role of miRNAs in BALF-EVs for pneumonia and the possibility to use them as new biomarkers for a rapid and early diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.