Abstract

To explore the value of color-coded virtual touch tissue imaging (CCV) using acoustic radiation force pulse technology (ARFI) in diagnosing malignant thyroid nodules. Images including 189 thyroid nodules were collected as training samples and a binary logistic regression analysis was used to calculate regression coefficients for Thyroid Imaging Reporting and Data System (TI-RADS) and CCV. An integrated prediction model (TI-RADS+CCV) was then developed based on the regression coefficients. Another testing dataset involving 40 thyroid nodules was used to validate and compare the diagnostic performance of TI-RADS, CCV, and the integrated predictive models using the receiver operating characteristic (ROC) curves. Both TI-RADS and CCV are independent predictors. The diagnostic performance advantage of CCV is insignificant compared to TI-RADS (P = 0.61). However, the diagnostic performance of the integrated prediction model is significantly higher than that of TI-RADS or CCV (all P < 0.05). Applying to the validation image dateset, the integrated predictive model yields an area under the curve (AUC) of 0.880. Developing a new predictive model that integrates the regression coefficients calculated from TI-RADS and CCV enables to achieve the superior performance of thyroid nodule diagnosis to that of using TI-RADS or CCV alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call