Abstract

We evaluated the performance of arterial spin-labeled perfusion imaging and diffusion-weighted imaging in diagnosing full-term neonatal hypoxic-ischemic encephalopathy. Arterial spin-labeled, diffusion-weighted imaging and conventional magnetic resonance imaging (T1-weighted imaging, T2-weighted imaging and T2 fluid-attenuated inversion recovery) were performed in 23 full-term neonates with hypoxic-ischemic encephalopathy group 10 normal neonates (Control group). The cerebral blood flow and the apparent diffusion coefficient were measured in the bilateral basal ganglia, thalamus and frontal white matter. The effect of neonatal age on the CBF and apparent diffusion coefficient values were further investigated after dividing the 23 ischemic encephalopathy cases into three subgroups (1-3 days, 4-7 days, and 8-15 days). The cerebral blood flow values in the thalamus and lenticular nucleus were significantly higher. The apparent diffusion coefficient values in the thalamus, frontal white matter and lenticular nucleus head were significantly lower in the hypoxic-ischemic encephalopathy group than those in the Control group (p < 0.05). There were no significant differences between the ischemic encephalopathy and Control groups in the cerebral blood flow values in the caudate nucleus head and frontal lobe white matter (p > 0.05). The cerebral blood flow and apparent diffusion coefficient values in the thalamus and lenticular nucleus were negatively correlated. Comparison among different age subgroups of hypoxic-ischemic encephalopathyneonates showed that the cerebral blood flow value was higher. In comparison, the apparent diffusion coefficient value was lower in the 1-3 days old neonates than those in the older neonates (p < 0.05). Arterial spin-labeled and diffusion-weighted imaging could reflect the ischemic encephalopathy pathological processes more comprehensively. The cerebral blood flow measurement and apparent diffusion coefficient values in the thalamus and the lenticular nucleus may represent a novel way to diagnose ischemic encephalopathy early.

Highlights

  • Hypoxic-ischemic encephalopathy (HIE) is a common reason for the early death of neonates

  • For the HIE cases, 9 patients suffered from acute asphyxia and the other 14 patients suffered from prolonged asphyxia

  • There were no significant differences between the HIE and Control groups regarding sex, age, gestational age, and weight

Read more

Summary

Introduction

Hypoxic-ischemic encephalopathy (HIE) is a common reason for the early death of neonates. Some asphyxiated newborns have decreased cerebral blood flow (CBF) on the first day of life, which may be related to the development of their brains and hypoxic-ischemic injury, and hyperperfusion usually reaches the peak on days 2–3 of their lives [2, 3]. Dynamic susceptibility contrast-enhanced perfusion MRI is commonly used to evaluate the microcirculation of brain tissue. With this technique, the hemodynamics, such as CBF, mean transit time, cerebral blood volume, and time to peak, can be evaluated through the time-signal intensity curve following the administration of contrast agents. Its application in pediatrics is limited because of the administration of contrast agents, and few studies are using perfusion-weighted imaging in the very immature brain [6, 7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call