Abstract
Purpose:We evaluated the utility of arterial spin labeling (ASL) imaging of tumor blood flow (TBF) for grading non-enhancing astrocytic tumors.Materials and Methods:Thirteen non-enhancing astrocytomas were divided into high-grade (n = 7) and low-grade (n = 6) groups. Both ASL and conventional sequences were acquired using the same magnetic resonance machine. Intratumoral absolute maximum TBF (TBFmax), absolute mean TBF (TBFmean), and corresponding values normalized to cerebral blood flow (TBFmax and TBFmean ratios) were measured. The Mann-Whitney U test and receiver operating characteristic (ROC) curve analysis were used to assess the accuracy of TBF variables for tumor grading.Results:Compared with low-grade astrocytoma, high-grade astrocytoma exhibited significantly greater absolute TBFmax (90.93 ± 24.96 vs 46.94 ± 20.97 ml/100 g/min, P < 0.001), TBFmean (58.75 ± 19.89 vs 31.16 ± 17.63 ml/100 g/min, P < 0.001), TBFmax ratio (3.34 ± 1.22 vs 1.35 ± 0.5, P < 0.001), and TBFmean ratio (2.15 ± 0.94 vs 0.88 ± 0.41, P < 0.001). The TBFmax ratio yielded the highest diagnostic accuracy (sensitivity 100%, specificity 86.3%), while absolute TBFmean yielded the lowest accuracy (sensitivity 85.7%, specificity 70.1%) by ROC analysis.Conclusion:Parameters from ASL perfusion imaging, particularly TBFmax ratio, may be useful for distinguishing high-grade from low-grade astrocytoma in cases with equivocal conventional MRI findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.