Abstract

ObjectivesTo evaluate the diagnostic performance and image quality of an iterative model-based reconstruction (IMR) using a 100-kVp protocol for the assessment of heavily calcified coronary vessels, compared to those of filtered back projection (FBP) and hybrid iterative technique (iDose4), and also compared to those of IMR with standard 120 kVp protocol.MethodsAmong patients with Agatston scores ≥ 400 who had undergone both coronary CT angiography (CCTA) and invasive coronary angiography (ICA), age- and sex-matched patients with body mass index < 30 were retrospectively enrolled from CCTA with low-kVp protocol (100 kVp, n = 30) and with standard-kVp protocol (120 kVp, n = 30). Image data were all reconstructed with FBP, iDose4, and IMR. In each dataset, the objective and subjective image quality, and diagnostic accuracy (> 50% in luminal reduction as compared with ICA) were assessed.ResultsIMR showed better objective and subjective image quality than FBP and iDose4 in both 100 kVp and 120 kVp groups (all p < 0.05). IMR showed a significantly improved all diagnostic performance compared with FBP (p < 0.05). Compared with iDose4, IMR significantly improved positive predictive value (85.0% vs. 80.5%; p < 0.05). There was no significant difference in image quality and diagnostic performance using IMR between the 100 kVp and 120 kVp groups.Conclusions100 kVp IMR may be useful for the assessment of heavily calcified coronary vessels, providing better diagnostic performance than FBP or iDose4 at the same dose, while maintaining similar diagnostic accuracy to 120 kVp IMR.

Highlights

  • Coronary computed tomography angiography (CCTA) has emerged as a robust non-invasive method with high sensitivity and negative predictive value to rule out coronary artery stenosis [1, 2]

  • iterative model-based reconstruction (IMR) showed a significantly improved all diagnostic performance compared with filtered back projection (FBP) (p < 0.05)

  • There was no significant difference in image quality and diagnostic performance using IMR between the 100 kVp and 120 kVp groups

Read more

Summary

Introduction

Coronary computed tomography angiography (CCTA) has emerged as a robust non-invasive method with high sensitivity and negative predictive value to rule out coronary artery stenosis [1, 2]. Despite the advancements in CT techniques, evaluation of heavily calcified coronary vessels still remains challenging due to the presence of blooming artifacts [3]. When a dense, calcified plaque is located adjacent to a structure with very low density, calcium blooming may lead to overestimation of luminal stenosis [4]. It accounts for false positivity, it impacts specificity and diagnostic accuracy [1, 5]. The use of high energy (kVp) imaging can reduce blooming artifacts, it results in an increased radiation exposure to the patients, which is very challenging in the era of reducing radiation dose as low as possible

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call