Abstract

The expansion of a laser-produced lithium plasma is characterized using two different high-speed imaging techniques. Firstly, a sequence of frames of the luminous plume is recorded using an interference filter/gated ICCD camera combination. Expansion velocities are estimated from these images. The conditions, in which the radial distributions of emitters could be recovered using Abel inversion, are discussed. Secondly, shadowgraphs obtained with a synchronized tunable dye laser light source are recorded at different probe wavelengths in the vicinity of the Li 0 670.7-nm resonance. The fringe patterns observed in these images are interpreted in terms of strong refractive index gradients within the plasma. The effect of anomalous dispersion is observed and strongly modifies the appearance of the shadowgraphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.