Abstract
An online diagnostic module for condition monitoring of two series-connected photovoltaic panels is presented. The technique is based on firstly perturbing the terminal voltages and currents of the panels with a switched-inductor circuit, which can also be used for differential power processing, to obtain the large-signal dynamic current-voltage characteristics of the panels. An evolutionary algorithm is used to estimate the intrinsic parameters of the panels from the time series of the sampled panel current and voltage. The conditions of the panels are monitored by observing the long-term changes in the extracted intrinsic parameters. Prototype data acquisition module for studying the conditions of solar panels of different technologies (amorphous and crystalline silicon) with different degrees of damage has been built and evaluated. Results reveal that the estimated intrinsic parameters from large-signal dynamic characteristic correlate with the observed health status of the tested panels. Theoretical predictions are favorably compared with experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.