Abstract

Metal mirrors will be implemented in about half of the ITER diagnostics. Mirrors in ITER will have to withstand radiation loads, erosion by charge-exchange neutrals, deposition of impurities, particle implantation and neutron irradiation. It is believed that the optical properties of diagnostic mirrors will be primarily influenced by erosion and deposition. A solution is needed for optimal performance of mirrors in ITER throughout the entire lifetime of the machine. A multi-machine research on diagnostic mirrors is currently underway in fusion facilities at several institutions and laboratories worldwide. Among others, dedicated investigations of ITER-candidate mirror materials are ongoing in Tore-Supra, TEXTOR, DIII-D, TCV, T-10 and JET. Laboratory studies are underway at IPP Kharkov (Ukraine), Kurchatov Institute (Russia) and the University of Basel (Switzerland). An overview of current research on diagnostic mirrors along with an outlook on future investigations is the subject of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.