Abstract

A procedure is proposed to expand the diagnostic capabilities of the pressure tendency equation of a primitive equation NWP model by computing the pressure tendency in physical coordinates. The advantages of isolating the density advection as a diagnostic tool to understand pressure changes is shown. By simple thermodynamic arguments it is demonstrated that in areas of synoptic-scale cyclonic development, the vertically integrated density advection is more than sufficient to explain the depletion of mass over a growing depression. Consequently, the joint contribution of the net divergence and vertical motion opposes the pressure fall. This is illustrated for a case of rapid cyclogenesis in southern South America.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.