Abstract

PurposeTo prospectively assess the feasibility of diffusional kurtosis (DK) imaging for distinguishing prostate cancer(PCa) from benign prostate hyperplasia (BPH) in comparison with standard diffusion-weighted (DW) imaging, as well as low-from high-grade malignant regions. Materials and methods147 consecutive patients with suspected PCa underwent multi-parametric 1.5-TMR. Diffusion kurtosis imaging was acquired with with 5 b values (0,600,800,1600,and 2400sec/mm2).Region of interest (ROI)-based measurements were performed on ADC, D, and K map by two radiologists. Data were analyzed by using mixed-model analysis of variance and receiver operating characteristic curves. Correlations among the three parameters (ADC,D and K) in all patients, and correlations between three parameters with the tumor Gleason score (GS) in PCa group were analyzed using Pearson's correlation coefficient in peripheral zone(PZ) and transiton zone(TZ). Results58 patients were proved with PCa (9 GS 3 + 3[PZ/TZ = 4/5], 49 GS ≥ 7 [PZ/TZ = 26/23]), and 89 patients were with BPH. ADC,D and K were able to distinguish benignance from tumor tissue both in PZ and TZ(P<0.01), but performed poorly in neither differentiating low-(GS 3 + 3) from high-grade (GS≥3 + 4) disease, nor GS(3 + 4) from GS(4 + 3).There was a weak correlation between the GS and ADC, D (PZ:ADC r=-0.113, D r=-0.139; TZ:ADC r=-0.104,D r=-0.103), while a moderate correlation between the GS and K(PZ:K r = 0.492; TZ:K r = 0.433, P<0.01).K had significantly greater area under the curve for differentiating PCa from BHP than ADC both in PZ and TZ. ConclusionDK model may add value in PCa detection and diagnosis, but none can differentiate low-from high-grade PCas (including GS=3+4 from GS=4+3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call