Abstract
Cardiac magnetic resonance cine images are conventionally acquired in breath-hold with a segmented balanced steady-state free precession (bSSFP) sequence, which requires a relatively long acquisition time and high patient cooperation. The single-shot compressed sensing (ss CS) cine sequence is a real-time sequence that has reasonable spatial and temporal resolution and can be applied during free breathing. However, the contrast between the myocardium and surrounding soft tissue is relatively reduced, and the epicardial delineation results are not as accurate with the ss CS cine sequence compared with the bSSFP sequence. In this study, we evaluated the use of a 2-shot CS cine technique in quickly acquiring high-quality images and accurately assessing cardiac function in clinical practice. The patients enrolled in the study underwent cardiovascular magnetic resonance (CMR) on a 3T scanner from Jul. to Dec. 2018. Cine imaging was performed with 3 different methods: a standard segment cine sequence, a real-time ss CS cine sequence, and a 2-shot CS cine sequence prototype. Quantitative analysis of image quality was performed using a 0-4 scoring system, and also edge sharpness was measured, and cardiac function analysis was performed for all 3 types of cine images. Thirty-eight patients underwent imaging with the three types of cine sequences. The average scan time of the standard cine sequence was 101±20 s, the average scan time of the ss CS cine sequence was 20±4 s, and the average scan time of the 2-shot CS cine sequence was 30±6 s. The standard cine sequence image score was 3.68±0.64 and edge sharpness was (2.47±0.18) mm, the ss CS cine sequence image score was 3.13±0.35 and edge sharpness was (4.69±0.02) mm, and the 2-shot cine sequence image score was 3.54±0.51 and the edge sharpness was (2.51±0.13) mm. In terms of the quantitative study of cardiac function, the differences between the standard cine sequence and the ss CS cine sequence were not statistically significant, except for those of the imaging score and LV mass. There were no significant differences in the cardiac function parameters between the standard cine sequence and the 2-shot cine sequence. There was a strong correlation between the standard cine and ss CS cine sequences and between the standard cine and 2-shot CS cine sequences (P<0.01) of all the cardiac function parameters. The 2-shot CS cine sequence can acquire images with a level of quality comparable to that of the standard cine sequence in a significantly shorter period of time. The functional parameters are similar between the 2-shot CS cine sequence and the standard cine sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.