Abstract

Functional neuroimaging has provided evidence for altered function of mesolimbic circuits implicated in reward processing, first and foremost the ventral striatum, in patients with schizophrenia. While such findings based on significant group differences in brain activations can provide important insights into the pathomechanisms of mental disorders, the use of neuroimaging results from standard univariate statistical analysis for individual diagnosis has proven difficult. In this proof of concept study, we tested whether the predictive accuracy for the diagnostic classification of schizophrenia patients vs. healthy controls could be improved using multivariate pattern analysis (MVPA) of regional functional magnetic resonance imaging (fMRI) activation patterns for the anticipation of monetary reward. With a searchlight MVPA approach using support vector machine classification, we found that the diagnostic category could be predicted from local activation patterns in frontal, temporal, occipital and midbrain regions, with a maximal cluster peak classification accuracy of 93% for the right pallidum. Region-of-interest based MVPA for the ventral striatum achieved a maximal cluster peak accuracy of 88%, whereas the classification accuracy on the basis of standard univariate analysis reached only 75%. Moreover, using support vector regression we could additionally predict the severity of negative symptoms from ventral striatal activation patterns. These results show that MVPA can be used to substantially increase the accuracy of diagnostic classification on the basis of task-related fMRI signal patterns in a regionally specific way.

Highlights

  • Alterations in the neural processing of reward are a key finding in schizophrenia and have been proposed to be linked to dysfunctional dopaminergic neurotransmission in the mesolimbic reward system, first and foremost the central and ventral striatum [1,2,3,4,5]

  • We examined the performance of the searchlight Support vector machine classification (SVM) classification on functional magnetic resonance imaging (fMRI) activation patterns in response to reward-indicating stimuli with the aim to decode the clinical status

  • There was a main effect of group (F(1,84) = 9.89, p = 0.002), indicating shorter reaction times (RT) in the healthy control group (RT averaged across conditions 383 ms (STD 163 ms) in schizophrenia patients and 292 ms (STD 91 ms) in controls)

Read more

Summary

Introduction

Alterations in the neural processing of reward are a key finding in schizophrenia and have been proposed to be linked to dysfunctional dopaminergic neurotransmission in the mesolimbic reward system, first and foremost the central and ventral striatum [1,2,3,4,5]. A number of functional magnetic resonance imaging (fMRI) studies have provided consistent evidence for reduced functional activation in the ventral striatum in response to PLOS ONE | DOI:10.1371/journal.pone.0119089. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call