Abstract

BackgroundAutism Spectrum Disorder (ASD) is a neurodevelopmental disability with altered connectivity in brain networks. New methodIn this study, brain connections in Resting-state functional Magnetic Resonance Imaging (Rs-fMRI) of ASD and Typical Developing (TD) are analyzed by partial and full correlation methods such as Gaussian Graphical Least Absolute Shrinkage and Selection Operator (GLASSO), Max-Det Matrix Completion (MDMC), and Pearson Correlation Co-Efficient (PCCE). We investigated Functional Connectivity (FC) of ASD and TD brain from 238 functionally defined regions of interest. Furthermore, we constructed a series of feature sets by applying conditional random forests and conditional permutation importance. We built classifier models by Random Forest (RF), Oblique RF (ORF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN) for each feature set. FC features are ranked based on p-value and we analyzed the top 20 FC features. ResultsWe achieved a single-trial test accuracy of 72.5 %, though MDMC-SVM and PCCE-CNN pipelines. Further, PCCE-CNN pipeline gives better average test accuracy (70.31 %) and area under the curve (0.73) compared to other pipelines. We found that top-20 PCCE based FC features are from networks such as Dorsal Attention (DA), Cingulo-Opercular Task Control (COTC), somatosensory motor hand and subcortical. In addition, among top 20 PCCE features, many FC links are found between COTC and DA (4 connections) which helped to discriminate the ASD and TD. Comparison with existing methods and ConclusionsThe generalized classifier models built in our study for highly heterogeneous participants perform better than previous studies with similar data sets and diagnostic groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call