Abstract

Integer-valued time series models make use of thinning operators for coherency in the nature of count data. However, the thinning operators make residuals unobservable and are the main difficulty in developing diagnostic tools for autocorrelated count data. In this regard, we introduce a new residual, which takes the form of predictive distribution functions, to assess probabilistic forecasts, and this new residual is supplemented by a modified usual residuals. Under integer-valued autoregressive (INAR) models, the properties of these two residuals are investigated and used to evaluate the predictive performance and model adequacy of the INAR models. We compare our residuals with the existing residuals through simulation studies and apply our method to select an appropriate INAR model for an over-dispersed real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.