Abstract

BackgroundAnkle syndesmosis injuries are common and range in severity from subclinical to grossly unstable. Definitive diagnosis of these injuries can be made with plain film radiographs, but are often missed when severity or image quality is low. Computed tomography (CT) and magnetic resonance imaging (MRI) can provide definitive diagnosis, but are costly and introduce the patient to radiation when CT is used. Ultrasonography may circumvent many of these disadvantages by being inexpensive, efficient, and able to detect injuries without radiation exposure. The purpose of this study was to evaluate the ability of ultrasonography to detect early stage supination-external rotation (SER) ankle syndesmosis injuries with a dynamic external rotational stress test.MethodsNine, all male, fresh frozen specimens were secured to an ankle rig and stress tested to 10 Nm of external rotational torque with ultrasonography at the tibiofibular clear space. The ankles were subjected to syndesmosis ligament sectioning and repeat stress measurements of the tibiofibular clear space at peak torque. Stress tests and measurements were repeated three times and averaged and analyzed using a repeated one-way analysis of variance (ANOVA). There were six ankle injury states examined including: Intact State, 75% of AITFL Cut, 100% of AITFL Cut, Fibula FX - Cut 8 cm proximal, 75% PITFL Cut, and 100% PITFL Cut.ResultsDynamic external rotation stress evaluation using ultrasonography was able to detect a significant difference between the uninjured ankle with a tibiofibular clear space of 4.5 mm and the stage 1 complete injured ankle with a clear space of 6.0 mm (P < .02). Additionally, this method was able to detect significant differences between the uninjured ankle and the stage 2–4 injury states.ConclusionDynamic external rotational stress evaluation using ultrasonography was able to detect stage 1 Lauge-Hansen SER injuries with statistical significance and corroborates criteria for diagnosing a syndesmosis injury at ≥6.0 mm of tibiofibular clear space widening.

Highlights

  • The ankle syndesmosis, or distal tibiofibular joint, functions to conjoin the tibial and fibular malleoli to form the ankle mortise through four ligaments: anterior inferior tibiofibular ligament (AITFL), posterior inferior tibiofibular ligament (PITFL), interosseous ligament (IOL), and the inferior transverse ligament (ITL)

  • The normal ankle state was found to be statistically different from the 100% AITFL injury state (P < .005), fibula fracture state(P < .005), 75% PITFL injury state (P < .005), and 100% PITFL injury state (P < .005)

  • AITFL injury state was found to be statistically different from the fibula fracture state (P = .046), 75% PITFL injury state (P = .007), and the 100% PITFL injury state (P < .005)

Read more

Summary

Introduction

The ankle syndesmosis, or distal tibiofibular joint, functions to conjoin the tibial and fibular malleoli to form the ankle mortise through four ligaments: anterior inferior tibiofibular ligament (AITFL), posterior inferior tibiofibular ligament (PITFL), interosseous ligament (IOL), and the inferior transverse ligament (ITL). Injuries to the syndesmosis are commonly concomitant in up to 23% of all ankle fractures and involved in up to 10% of all ankle sprains [1] These ligaments keep the talus well seated between the tibia and fibula by maintaining mortise integrity. When the syndesmosis is injured, it allows greater movement of the talus within the mortise and decreases the contact surface area in the ankle, this depends on injury severity [2]. This can cause decreased function due to pain and instability and may lead to accelerated degradation of cartilage and formation of osteoarthritis [3]. The purpose of this study was to evaluate the ability of ultrasonography to detect early stage supination-external rotation (SER) ankle syndesmosis injuries with a dynamic external rotational stress test

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call