Abstract

BackgroundTo assess the diagnostic capability of novel Bruch’s membrane opening (BMO)-based disc parameters, the BMO-minimum rim width (BMO-MRW) and the BMO-minimum rim area (BMO-MRA) in the Chinese population and compare them to the retinal nerve fiber layer (RNFL) from optical coherence tomography (OCT) and the rim area (RA) from the Heidelberg retinal tomograph-III (HRT-III).MethodsIn total, 200 eyes of 77 healthy and 123 primary open-angle glaucoma (POAG) subjects were included in this cross-sectional study. All participants underwent the visual field test and structural measurements by OCT and HRT-III. The areas under the receiver operating characteristic curves (AUCs) of different structural parameters were calculated to assess their diagnostic power and compared using the DeLong test.ResultsIn populations with different characteristics, the BMO-MRW and BMO-MRA had better diagnostic power than the RA. In discriminating between all POAG subjects and healthy controls and between early-stage patients and controls, the global BMO-MRW had comparable AUCs with the RNFL, but the BMO-MRA had lower AUCs than the RNFL. In healthy subjects with macrodiscs, both the global and sectoral BMO-MRW were thinner than those in healthy subjects with normal disc size. The AUCs of BMO-MRA, BMO-MRW and RNFL in subjects with macrodiscs were comparable. Additionally, in the myopic population, the BMO-MRA and BMO-MRW had comparable AUCs with the RNFL.ConclusionsThe BMO-MRW had comparable diagnostic power with the RNFL, and compared with BMO-MRW, the BMO-MRA might have advantages in certain populations, such as macrodiscs. All OCT-derived parameters exceeded the RA in diagnostic capability.

Highlights

  • To assess the diagnostic capability of novel Bruch’s membrane opening (BMO)-based disc parameters, the BMO-minimum rim width (BMO-MRW) and the BMO-minimum rim area (BMO-MRA) in the Chinese population and compare them to the retinal nerve fiber layer (RNFL) from optical coherence tomography (OCT) and the rim area (RA) from the Heidelberg retinal tomograph-III (HRT-III)

  • Previous studies have demonstrated that the one-dimensional parameter BMO-minimum rim width (BMO-MRW) has better diagnostic capability and a stronger correlation with visual field (VF) damage than traditional disc parameters, even surpassing the RNFL in some studies [9,10,11,12,13]; the BMO-MRW values in normal subjects were found to be related to disc size, and larger discs might have a physiologically thinner BMO-MRW, resulting in inaccurate comparability between subjects with different optic disc sizes [14, 15]

  • No significant differences in age, axial length, refractive error, central corneal thickness, BMO area or disc area were found between the controls and glaucoma subjects

Read more

Summary

Introduction

To assess the diagnostic capability of novel Bruch’s membrane opening (BMO)-based disc parameters, the BMO-minimum rim width (BMO-MRW) and the BMO-minimum rim area (BMO-MRA) in the Chinese population and compare them to the retinal nerve fiber layer (RNFL) from optical coherence tomography (OCT) and the rim area (RA) from the Heidelberg retinal tomograph-III (HRT-III). Novel Bruch’s membrane opening (BMO)-based disc parameters were proposed recently for quantifying glaucomatous damage in the optic disc[6, 7], and are supposed to accurately reflect the rim tissue in consideration of the trajectory of nerve fibers and be stable for follow-up compared to traditional rim measurements with the application of a minimum distance algorithm and individual regionalization according to the personal BMO-fovea axis [8]. The BMO-MRA is supposed to be more advantageous than the BMO-MRW when applied to comparison of different disc sizes; the BMO-MRA has far only been investigated in only a few studies with Caucasian populations

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.