Abstract

The recently introduced Borg multiobjective evolutionary algorithm (MOEA) framework features auto-adaptive search that tailors itself to effectively explore different problem spaces. A key auto-adaptive feature of the Borg MOEA is the dynamic allocation of search across a suite of recombination and mutation operators. This study explores the application of the Borg MOEA on a real-world product family design problem: the severely constrained, ten objective General Aviation Aircraft (GAA) problem. The GAA problem represents a promising benchmark problem that strongly highlights the importance of using auto-adaptive search to discover how to exploit multiple recombination strategies cooperatively. The auto-adaptive behavior of the Borg MOEA is rigorously compared against its ancestor algorithm, the e-MOEA, by employing global sensitivity analysis across each algorithm's feasible parameter ranges. This study provides the first Sobol' sensitivity analysis to determine the individual and interactive parameter sensitivities of MOEAs on a real-world many-objective problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.