Abstract
Simple SummaryMyelodysplastic syndromes (MDS) originate from mutated hematopoietic stem and progenitor cells. Despite recent advances in genetics, the mechanisms involved in clonal progression remain largely unknown. We performed an exploratory, case-control study to identify immune-related biomarkers with diagnostic and prognostic utility. Our study suggests a combined Casp1/PD-L1 assessment to distinguish reactive conditions from lower- and higher-risk MDS. These immune-related biomarkers may help to personalize immuno-therapies but require further validation in prospective studies.Background: The inflammasome plays an essential role in lower risk MDS and immune subversion, with the up-regulation of immune checkpoint molecules in the progression to higher-risk disease. In this study, we explored the utility of immune-related biomarkers for the diagnosis and prognosis of MDS. Methods: We performed an exploratory, case-control study with 20 randomly selected MDS patients and nine controls with non-inflammatory (n = 3) and inflammatory conditions (n = 6). Patients were stratified in groups of lower (n = 10) and higher risk (n = 10) using IPSS-R. For the exploration of inflammasome and immune checkpoint activities, the expression of caspase-1 (Casp1), programmed cell death protein 1 (PD-1) and its ligand (PD-L1) were assessed in bone marrow samples using immunohistochemistry. Results: In multivariate analysis, we observed significant differences for Casp1 but not PD1/PD-L1 expression in our four conditions (p = 0.003). We found a discordant co-expression of Casp1/PD-L1 in MDS (rho = −0.41, p = 0.07) compared with a concordant co-expression in controls (rho = 0.64, p = 0.06). Neutrophil counts correlated directly with Casp1 (rho = 0.57, p = 0.009) but inversely with PD-L1 expression (rho = −0.58, p = 0.007). Conclusion: We identified characteristic discordant co-expression patterns in lower- (Casp1high/PD-L1low) and higher-risk MDS (Casp1low/PD-L1high), contrasting with concordant patterns in the non-inflammatory (Casp1low/PD-L1low) and inflammatory conditions (Casp1high/PD-L1high). Further validation is warranted in larger, prospective studies.
Highlights
Myelodysplastic syndromes (MDS) are heterogeneous diseases originating from somatically mutated, hematopoietic stem and progenitor cells (HSPCs)
MDS patient characteristics were similar in both risk groups and numbers generally too low to identify small differences between higher and lower risk
We further investigated the association of immune-related biomarkers with relevant clinical endpoints in MDS patients
Summary
Myelodysplastic syndromes (MDS) are heterogeneous diseases originating from somatically mutated, hematopoietic stem and progenitor cells (HSPCs). Their clinical features comprise inflammation, dysplasia, cytopenia and a propensity to evolve towards acute myeloid leukemia (AML). We explored the utility of immune-related biomarkers for the diagnosis and prognosis of MDS. For the exploration of inflammasome and immune checkpoint activities, the expression of caspase-1 (Casp1), programmed cell death protein 1 (PD-1) and its ligand (PD-L1) were assessed in bone marrow samples using immunohistochemistry. Conclusion: We identified characteristic discordant co-expression patterns in lower- (Casp1high /PD-L1low ) and higher-risk MDS (Casp1low /PD-L1high ), contrasting with concordant patterns in the non-inflammatory (Casp1low /PD-L1low ) and inflammatory conditions (Casp1high /PD-L1high ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.