Abstract
A diagnostic study was conducted to examine the effectiveness of malodor removal from a large-scale municipal waste treatment plant in an urban area. To this end, the odor pollution status was investigated from a total of 16 spots in the treatment facility to cover the dual treatment lines consisting of regenerative thermal oxidation (first stage) and a wet chemical scrubber (second stage). As a simple means to learn more about the odorant removal efficiency of different treatment units, samples collected from ambient spots as well as before and after each treatment unit were analyzed for 22 key offensive odorants (i.e., reduced sulfur compounds, carbonyl compounds, nitrogenous compounds, volatile organic compounds, and fatty acids) along with dilution-to-threshold ratios based on the air dilution sensory test. The removal patterns differed greatly between different odorant groups across different processing units. The effectiveness of this dual treatment system was optimized for such odorants as hydrogen sulfide and ammonia, while it was not the case for others (e.g., some aldehydes and organic acids). The results thus suggest the need for the validation of the efficiency in many types of odor processing units and for establishing new control techniques to cover a list of odorants un-subordinate to preexisting methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.