Abstract

BackgroundCatheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs). Microbiological evidence implicating catheters as the source of bloodstream infection is necessary to establish the diagnosis of CR-BSIs. Semi-quantitative culture is used to determine the presence of microorganisms on the external catheter surface, whereas quantitative culture also isolates microorganisms present inside the catheter. The main objective of this study was to determine the sensitivity and specificity of these two techniques for the diagnosis of CR-BSIs in newborns from a neonatal ICU. In addition, PFGE was used for similarity analysis of the microorganisms isolated from catheters and blood cultures.MethodsSemi-quantitative and quantitative methods were used for the culture of catheter tips obtained from newborns. Strains isolated from catheter tips and blood cultures which exhibited the same antimicrobial susceptibility profile were included in the study as positive cases of CR-BSI. PFGE of the microorganisms isolated from catheters and blood cultures was performed for similarity analysis and detection of clones in the ICU.ResultsA total of 584 catheter tips from 399 patients seen between November 2005 and June 2012 were analyzed. Twenty-nine cases of CR-BSI were confirmed. Coagulase-negative staphylococci (CoNS) were the most frequently isolated microorganisms, including S. epidermidis as the most prevalent species (65.5%), followed by S. haemolyticus (10.3%), yeasts (10.3%), K. pneumoniae (6.9%), S. aureus (3.4%), and E. coli (3.4%). The sensitivity of the semi-quantitative and quantitative techniques was 72.7% and 59.3%, respectively, and specificity was 95.7% and 94.4%. The diagnosis of CR-BSIs based on PFGE analysis of similarity between strains isolated from catheter tips and blood cultures showed 82.6% sensitivity and 100% specificity.ConclusionThe semi-quantitative culture method showed higher sensitivity and specificity for the diagnosis of CR-BSIs in newborns when compared to the quantitative technique. In addition, this method is easier to perform and shows better agreement with the gold standard, and should therefore be recommended for routine clinical laboratory use. PFGE may contribute to the control of CR-BSIs by identifying clusters of microorganisms in neonatal ICUs, providing a means of determining potential cross-infection between patients.

Highlights

  • Catheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs)

  • Microbiological evidence implicating the catheter as a source of bloodstream infection is necessary to establish the diagnosis of CR-BSIs

  • Since the semi-quantitative culture method only detects the presence of microorganisms on the external catheter surface, whereas quantitative culture isolates microorganisms present inside the catheter, the main objective of this study was to determine the accuracy of the semiquantitative technique proposed by Maki et al [5] and of the quantitative technique described by Brun-Buisson et al [8] for the diagnosis of CR-BSIs in newborns from a neonatal ICU

Read more

Summary

Introduction

Catheter-related bloodstream infections (CR-BSIs) have become the most common cause of healthcare-associated bloodstream infections in neonatal intensive care units (ICUs). The semi-quantitative method proposed by Maki et al in 1977 [5] continues to be the international reference diagnostic method and is used as the gold standard in studies comparing different diagnostic methods. In this culture method, a segment of the catheter tip is rolled across a blood agar plate to detect the presence of bacteria on the external catheter surface. The threshold for a significant count is 103 CFU/mL [7,8]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.