Abstract

In-house PCR (hPCR) could speed differential diagnosis between tuberculosis (TB) and nontuberculous mycobacterial disease in patients with positive smears and pulmonary infiltrates, but its reported accuracy fluctuates across studies. We conducted a systematic review and meta-analysis of hPCR sensitivity and specificity for smear-positive TB diagnosis, using culture as the reference standard. After searching English language studies in MEDLINE and EMBASE, we estimated cumulative accuracy by means of summary receiver operating characteristic analysis. The possible influence of hPCR procedures and study methodological features on accuracy was explored by univariate metaregression, followed by multivariate adjustment of items selected as significant. Thirty-five articles (1991 to 2006) met the inclusion criteria. The pooled estimates of the diagnostic odds ratio, sensitivity, and specificity (random-effect model) were, respectively, 60 (confidence interval [CI], 29 to 123), 0.96 (CI, 0.95 to 0.97), and 0.81 (CI, 0.78 to 0.84), but significant variations (mainly in specificity) limit their clinical applicability. The quality of the reference test, the detection method, and real-time PCR use explained some of the observed heterogeneity. Probably due to the limited study power of our meta-analysis and to the wide differences in both laboratory techniques and methodological quality, only real-time PCR also displayed a positive impact on accuracy in the multivariate model. Currently, hPCR can be confidently used to exclude TB in smear-positive patients, but its low specificity could lead to erroneous initiation of therapy, isolation, and contact investigation. As the inclusion of samples from treated patients could have artificially reduced specificity, future studies should report mycobacterial-culture results for each TB and non-TB sample analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call