Abstract
BackgroundEstimation of functional relevance of a coronary stenosis by fractional flow reserve (FFR) from coronary computed tomography angiography (CCTA) has recently provided encouraging results. Due to its limited availability, the corrected contrast opacification (CCO) decrease and the transluminal attenuation gradient (TAG) were suggested as less complex alternatives. The aim of the present study was to assess the accuracy of CCO decrease and TAG to predict ischemia as assessed by single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI).ResultsThis retrospective study included 72 patients who underwent hybrid CCTA/SPECT MPI with at least one coronary artery stenosis. Of 127 vessels with a coronary stenosis in CCTA, 38 (30%) were causing ischemia in its subtending myocardium. The area under the curve (AUC) for CCO decrease to predict ischemia was 0.707 with sensitivity, specificity, negative predictive value, positive predictive value, and accuracy of 74, 64, 85, 47, and 67%, respectively. For TAG, the AUC was 0.469.ConclusionsCCTA-derived CCO decrease but not TAG predicts ischemia in SPECT MPI. The negative predictive value of CCO decrease of 85% may confer clinical implications in the diagnostic work-up of patients with a coronary stenosis.
Highlights
Estimation of functional relevance of a coronary stenosis by fractional flow reserve (FFR) from coronary computed tomography angiography (CCTA) has recently provided encouraging results
Since the computation of FFRCT is a cumbersome process with limited availability, faster and less complex alternative CT-derived parameters have evolved, such as the decrease in corrected contrast opacification (CCO) across a stenosis and the transluminal attenuation gradient (TAG) along a coronary vessel [15,16,17,18]
CCTA and single-photon emission computed tomography (SPECT) findings CCO decrease was successfully assessed in all 183 coronary lesions of the 127 vessels (100%)
Summary
Estimation of functional relevance of a coronary stenosis by fractional flow reserve (FFR) from coronary computed tomography angiography (CCTA) has recently provided encouraging results. Besides static and dynamic CT perfusion [12], recent studies have suggested that functional relevance of a coronary lesion can be estimated by fractional flow reserve (FFR) derived from CCTA (FFRCT) with high diagnostic accuracy [13] and positive impact on downstream resource utilization [14]. Since the computation of FFRCT is a cumbersome process with limited availability, faster and less complex alternative CT-derived parameters have evolved, such as the decrease in corrected contrast opacification (CCO) across a stenosis and the transluminal attenuation gradient (TAG) along a coronary vessel [15,16,17,18].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.