Abstract
To evaluate the diagnostic accuracy of artificial intelligence-based algorithms in identifying neck of femur fracture on a plain radiograph. Systematic review and meta-analysis. PubMed, Web of science, Scopus, IEEE, and the Science direct databases were searched from inception to 30 July 2023. Eligible article types were descriptive, analytical, or trial studies published in the English language providing data on the utility of artificial intelligence (AI) based algorithms in the detection of the neck of the femur (NOF) fracture on plain X-ray. The prespecified primary outcome was to calculate the sensitivity, specificity, accuracy, Youden index, and positive and negative likelihood ratios. Two teams of reviewers (each consisting of two members) extracted the data from available information in each study. The risk of bias was assessed using a mix of the CLAIM (the Checklist for AI in Medical Imaging) and QUADAS-2 (A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies) criteria. Of the 437 articles retrieved, five were eligible for inclusion, and the pooled sensitivity of AIs in diagnosing the fracture NOF was 85%, with a specificity of 87%. For all studies, the pooled Youden index (YI) was 0.73. The average positive likelihood ratio (PLR) was 19.88, whereas the negative likelihood ratio (NLR) was 0.17. The random effects model showed an overall odds of 1.16 (0.84-1.61) in the forest plot, comparing the AI system with those of human diagnosis. The overall heterogeneity of the studies was marginal (I2 = 51%). The CLAIM criteria for risk of bias assessment had an overall >70% score. Artificial intelligence (AI)-based algorithms can be used as a diagnostic adjunct, benefiting clinicians by taking less time and effort in neck of the femur (NOF) fracture diagnosis. PROSPERO CRD42022375449. The online version contains supplementary material available at 10.1007/s43465-024-01130-6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.