Abstract

Abstract Canola plants (Brassica napus cv. Eureka) were grown in soil culture with seven levels of zinc (Zn) supply (0, 67, 133, 200, 267, 533, and 1,067 μg Zn/kg soil) for 39 days. Critical Zn concentrations in young leaf blades and petioles were established for the diagnosis of Zn deficiency in canola plants during vegetative growth by assessing the relationship between the Zn concentration in the leaves and shoot dry matter on 22 and 39 days after sowing (DAS). Zinc concentrations in leaf blades and petioles increased with increasing Zn supply, but Zn concentrations were always 50% higher in the youngest open leaf (YOL) than in the youngest mature leaf (YML). The relationship between shoot dry matter and Zn concentrations in leaf petioles exhibited Piper‐Steenbjerg curvature, indicating their unsuitability for Zn‐deficiency diagnosis either alone or by inclusion with leaf blades. By contrast, inclusion of leaf mid‐ribs with leaf blades did not alter the relationship between shoot dry matter and Zn concentrations, nor the critical Zn concentration. Critical Zn concentrations in the YOL, YOL+1, and YOL+2 blade on 39 DAS, corresponding with the stem elongation stage, were 15–17, 9–10, and 7–8 mg Zn/kg dry matter, respectvely. In comparison, the critical Zn concentration in the YOL+2 leaf blades with mid‐ribs was 7–8 mg Zn/kg dry matter. In conclusion, during the vegetative stage up to stem elongation, YOL+2 leaf blades which are also the YML are recommended for the diagnosis of Zn deficiency in canola plants with the critical Zn concentration being 7–8 mg Zn/kg dry matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call