Abstract

The possibility of intermediate-term earthquake prediction at Mt. Vesuvius by means of the CN algorithm is explored. CN was originally designed to identify the Times of Increased Probability (TIPs) for the occurrence of strong tectonic earthquakes, with magnitude M ≥ M0, within a region a priori delimited. Here the CN algorithm is applied, for the first time, to the analysis of volcanic seismicity. The earthquakes recorded at Mt. Vesuvius during the period from February 1972 to June 2004 are considered, and the magnitude threshold M0 selecting the events to be predicted is varied within the range: 3.0–3.3. Satisfactory prediction results are obtained, by retrospective analysis, when a time scaling is introduced. In particular, when the length of the time windows is reduced by a factor 2.5–3, with respect to the standard version of CN algorithm, more than 90% of the events with M ≥ M0 occur within the TIP intervals, with TIPs occupying about 30% of the total time considered. The control experiment ``Seismic History'' demonstrates the stability of the obtained results and indicates that the CN algorithm can be applied to monitor the preparation of impending earthquakes with M ≥ 3.0 at Mt. Vesuvius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.