Abstract

BackgroundToxoplasma gondii, a widely prevalent protozoan parasite, causes serious toxoplasmosis infections in humans and other animals. Among livestock, pigs are susceptible to T. gondii infection. Despite Henan being one of the biggest pig-raising provinces in China, little information exists on the epidemiology of toxoplasmosis in this location. Therefore, we molecularly characterized DNA samples from pigs in Henan. A total of 1647 samples, including 952 from dead piglets, 478 from seriously sick fattening pigs and 217 from abortion sows, were collected from different animal hospitals or pig farms from 10 different cities in Henan (2006–2008). Each pig corresponded to a separate pig farm. DNA was extracted from 3 to 5 g of the most severely affected pig tissue (liver, spleen, lung, hilar lymph nodes and amniotic fluid) after postmortem examination. The presence of the T. gondii B1 gene was detected using nested polymerase chain reactions (PCR). Genotyping was performed directly on DNA from the PCR-positive tissue samples using 11 PCR restriction fragment length polymorphism markers (SAG1, 5′- and 3′-SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, c22–8, c29–2, and Apico).ResultsOf all samples, thirty-four were positive for the T. gondii B1 gene (2.06%, 95% CI: 1.86%–2.26%) from four cities, including 31 from NanYang city, one (PgXY 1) from Xinyang City, one (PgZZ 1) from Zhengzhou City and one (PgZK1) from Zhoukou City. The prevalence was found to be highest in piglets than in fattening pigs and sows. And the difference was statistically significant (P<0.01). The following 32 samples were genotyped with complete data: 13 hilar lymph node tissue samples, seven liver tissue samples, seven lung tissue samples, four spleen tissue samples, and one amniotic fluid sample. Only one genotype, belonging to ToxoDB Genotype #9, was identified.ConclusionsThis is the first large-scale survey molecularly characterizing T. gondii from pigs in Henan. The results of the present study revealed that T. gondii infection is present in swine in Henan and is a potential source of foodborne toxoplasmosis in the investigated areas. Implementation of effective control measures for T. gondii to reduce the chance of zoonotic toxoplasmosis spreading from pig farms may be warranted. The results show that the ToxoDB #9 genotype may be the dominant T. gondii lineage in mainland China. These findings strengthen the limited Chinese T. gondii epidemiology database.

Highlights

  • Toxoplasma gondii, a widely prevalent protozoan parasite, causes serious toxoplasmosis infections in humans and other animals

  • All the T. gondii-positive samples were identified by multilocus polymerase chain reactions (PCR)-Restriction fragment length polymorphism (RFLP)

  • It is interesting that only one genotype (ToxoDB#9) from all the T. gondii samples from different cities in Henan was identified, while typical type I, II and III lineages, which are predominant in North America and Europe, were not found in our study

Read more

Summary

Introduction

Toxoplasma gondii, a widely prevalent protozoan parasite, causes serious toxoplasmosis infections in humans and other animals. Pigs are susceptible to T. gondii infection. We molecularly characterized DNA samples from pigs in Henan. A total of 1647 samples, including 952 from dead piglets, 478 from seriously sick fattening pigs and 217 from abortion sows, were collected from different animal hospitals or pig farms from 10 different cities in Henan (2006–2008). Humans become infected postnatally mainly by ingesting infectious oocysts from the environment or by consumption of undercooked or raw meat that contains tissue cysts. Pigs are susceptible to infection with T. gondii and infected pigs are considered to be one of the most important sources of T. gondii infection in humans [5]. The potential risk of transmission of the disease to humans by consumption of undercooked or raw pork is an important food safety issue

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.