Abstract

To confirm the formation of the superoxide anion radical (O2−∙) in liquids by atmospheric-pressure plasma, we investigated plasma-induced radical species in water using the electron spin resonance (ESR) spin-trapping technique combined with two proteins: superoxide dismutase (SOD), which has enzymatic activity to quench the superoxide anion radical, and bovine serum albumin (BSA), which does not have this enzymatic activity. Different setups of contact and non-contact atmospheric-pressure helium plasma were tested with an additional supply of oxygen gas. For each setup of plasma, no superoxide anion adduct ESR signal was observed in the aqueous solution with SOD, whereas the ESR signal appears in the samples with BSA and without any additive proteins. This means that a superoxide anion radical in the solution is sufficiently quenched by SOD before the formation of the spin adduct. The superoxide anion radical is actually induced in an aqueous solution by atmospheric-pressure plasma when ambient gases contain oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.