Abstract

BackgroundThe capacity to diagnose obstructive sleep apnoea (OSA) must be expanded to meet an estimated disease burden of nearly one billion people worldwide. Validated alternatives to the gold standard polysomnography (PSG) will improve access to testing and treatment. This study aimed to evaluate the diagnosis of OSA, using measurements of mandibular movement (MM) combined with automated machine learning analysis, compared to in-home PSG.Methods40 suspected OSA patients underwent single overnight in-home sleep testing with PSG (Nox A1, ResMed, Australia) and simultaneous MM monitoring (Sunrise, Sunrise SA, Belgium). PSG recordings were manually analysed by two expert sleep centres (Grenoble and London); MM analysis was automated. The Obstructive Respiratory Disturbance Index calculated from the MM monitoring (MM-ORDI) was compared to the PSG (PSG-ORDI) using intraclass correlation coefficient and Bland-Altman analysis. Receiver operating characteristic curves (ROC) were constructed to optimise the diagnostic performance of the MM monitor at different PSG-ORDI thresholds (5, 15, and 30 events/hour).Results31 patients were included in the analysis (58% men; mean (SD) age: 48 (15) years; BMI: 30.4 (7.6) kg/m2). Good agreement was observed between MM-ORDI and PSG-ORDI (median bias 0.00; 95% CI −23.25 to + 9.73 events/hour). However, for 15 patients with no or mild OSA, MM monitoring overestimated disease severity (PSG-ORDI < 5: MM-ORDI mean overestimation + 5.58 (95% CI + 2.03 to + 7.46) events/hour; PSG-ORDI > 5–15: MM-ORDI overestimation + 3.70 (95% CI −0.53 to + 18.32) events/hour). In 16 patients with moderate-severe OSA (n = 9 with PSG-ORDI 15–30 events/h and n = 7 with a PSG-ORD > 30 events/h), there was an underestimation (PSG-ORDI > 15: MM-ORDI underestimation −8.70 (95% CI −28.46 to + 4.01) events/hour). ROC optimal cut-off values for PSG-ORDI thresholds of 5, 15, 30 events/hour were: 9.53, 12.65 and 24.81 events/hour, respectively. These cut-off values yielded a sensitivity of 88, 100 and 79%, and a specificity of 100, 75, 96%. The positive predictive values were: 100, 80, 95% and the negative predictive values 89, 100, 82%, respectively.ConclusionThe diagnosis of OSA, using MM with machine learning analysis, is comparable to manually scored in-home PSG. Therefore, this novel monitor could be a convenient diagnostic tool that can easily be used in the patients’ own home.Clinical Trial Registrationhttps://clinicaltrials.gov, identifier NCT04262557

Highlights

  • Obstructive sleep apnoea (OSA) is a major burden worldwide, affecting nearly one billion people (Benjafield et al, 2019; Grote, 2019; Lyons et al, 2020)

  • In patients with no OSA (

  • In patients with moderate-severe OSA (ORDI score > 15, n = 16) MM-ORDI underestimated by −8.70 events/hour

Read more

Summary

Introduction

Obstructive sleep apnoea (OSA) is a major burden worldwide, affecting nearly one billion people (Benjafield et al, 2019; Grote, 2019; Lyons et al, 2020). An acute need has arisen to reevaluate OSA diagnosis and treatment, due to the COVID-19 pandemic, which has reduced resources and increased waiting lists (Patel and Donovan, 2020; Schiza et al, 2021). The COVID19 pandemic has resulted in the need for disposable diagnostic monitors that can be used safely in the patients’ home, to facilitate remote healthcare pathways (Grote et al, 2020). The capacity to diagnose obstructive sleep apnoea (OSA) must be expanded to meet an estimated disease burden of nearly one billion people worldwide. This study aimed to evaluate the diagnosis of OSA, using measurements of mandibular movement (MM) combined with automated machine learning analysis, compared to in-home PSG

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call