Abstract
In this paper, a new fault diagnosis framework for proton exchange membrane fuel cells based on Electrochemical Impedance Spectroscopy (EIS) and the deep learning method is proposed. Specifically, this work employs the PEMFC knowledge to drive the training process of the deep learning network, which makes it possible to improve fault diagnosis performance by deep learning algorithms with a limited scale of actual measured EIS data. A pre-training network is developed to predict the equivalent circuit model (ECM) parameters, which could reduce the time consumption of ECM parameter identification. Besides, considering that the ECM parameters are susceptible to significant changes due to non-fault operation, a fine-tuning network is designed to generate robust diagnosis features, which could support the proposed framework working in different environments. Moreover, the complex neural networks are adopted in the proposed framework to extract features from EIS data, which is composed of complex impedances. Finally, a new evaluation metric PScore is proposed to assess the performance of the diagnosis framework from the perspective of practical applications. The experiments are performed to demonstrate the effectiveness of each component in the framework, and the proposed algorithm has significant improvements in fault diagnosis performance and computational efficiency over traditional algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.