Abstract

Partial discharge (PD) is a common phenomenon of insulation aging in air-insulated switchgear and will change the gas composition in the equipment. However, it is still a challenge to diagnose and identify the defect types of PD. This paper conducts enclosed experiments based on gas sensors to obtain the concentration data of the characteristic gases CO, NO2, and O3 under four typical defects. The random forest algorithm with grid search optimization is used for fault identification to explore a method of identifying defect types through gas concentration. The results show that the gases concentration variations do have statistical characteristics, and the RF algorithm can achieve high accuracy in prediction. The combination of a sensor and a machine learning algorithm provides the gas component analysis method a way to diagnose PD in an air-insulated switchgear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.