Abstract

Metagenomic next-generation sequencing (mNGS) has been extensively used in the diagnosis of infectious diseases but has rarely been applied in non-tuberculous mycobacterial pulmonary disease (NTMPD). This study analyzed the diagnostic performance of mNGS in bronchoalveolar lavage fluid (BALF) samples to identify non-tuberculous mycobacteria (NTM). A total of 231 patients with suspected NTMPD were recruited from the First Affiliated Hospital, School of Medicine, Zhejiang University, from March 2021 to October 2022. A total of 118 cases were ultimately included. Of these patients, 61 cases were enrolled in the NTMPD group, 23 cases were enrolled in the suspected-NTMPD group, and 34 cases were enrolled in the non-NTMPD group. The diagnostic performance of traditional culture, acid-fast staining (AFS), and mNGS for NTMPD was assessed. Patients in the NTMPD group had a higher proportion of bronchiectasis (P=0.007). Among mNGS-positive samples in the NTMPD group, a significantly higher reads number of NTM was observed in AFS-positive patients [61.50 (22.00, 395.00) vs 15.50 (6.00, 36.25), P=0.008]. Meanwhile, mNGS demonstrated a sensitivity of 90.2%, which was far superior to AFS (42.0%) and culture (77.0%) (P<0.001). The specificity of mNGS in detecting NTM was 100%, which was the same as that of traditional culture. The area under the receiver operating characteristic curve of mNGS was 0.951 (95% CI 0.906-0.996), which was higher than that of culture (0.885 [95% CI 0.818-0.953]) and AFS (0.686 [95% CI 0.562-0.810]). In addition to NTM, other pulmonary pathogens were also found by mNGS. mNGS using BALF samples is a rapid and effective diagnostic tool for NTMPD, and mNGS is recommended for patients with suspected NMTPD or NTM coinfected pneumonia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call