Abstract

It is common to monitor several correlated quality characteristics using the Hotelling's T 2 statistic. However, T 2 confounds the location shift with scale shift and consequently it is often difficult to determine the factors responsible for out of control signal in terms of the process mean vector and/or process covariance matrix. In this paper, we propose a diagnostic procedure called ‘D-technique’ to detect the nature of shift. For this purpose, two sets of regression equations, each consisting of regression of a variable on the remaining variables, are used to characterize the ‘structure’ of the ‘in control’ process and that of ‘current’ process. To determine the sources responsible for an out of control state, it is shown that it is enough to compare these two structures using the dummy variable multiple regression equation. The proposed method is operationally simpler and computationally advantageous over existing diagnostic tools. The technique is illustrated with various examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.