Abstract
To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Pediatric Infectious Diseases Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.