Abstract

This chapter presents a new methodology to perform health monitoring of hybrid systems under uncertainty. Hybrid systems can be represented as multi-mode systems with hybrid automata. Diagnosers are generated from these hybrid automata using a new data structure in order to monitor both the behavior and degradation of such systems. After a review of the state of the art on different existing solutions for diagnosis of hybrid systems under uncertainty, we propose to introduce the Hybrid Particle Petri Nets (HPPN) modeling framework. The main advantage of HPPN is that they take into account knowledge-based uncertainty in the system representation and uncertainty in the diagnosis process. The HPPN-based diagnoser deals with occurrences of unobservable discrete events (such as fault events) and it is robust to false observations. It also estimates the continuous state of the system by using particle filtering. A methodology is proposed to perform model-based diagnosis on hybrid systems by using the HPPN modeling framework. The system diagnosis is computed at any time from a HPPN-based diagnoser and contains all the hypotheses over its past mode trajectory. Each hypothesis is valued with a belief degree and includes discrete and continuous state estimates, as well as the set of faults that occurred on the system up to the current time. The HPPN-based methodology is demonstrated with an application on the K11 planetary rover prototype developed by NASA Ames Research Center. A hybrid model of the K11 is proposed and experimental results show that the approach is robust to real system data and constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.