Abstract

Human metapneumovirus (hMPV) is a common respiratory tract infection in children. However, conventional immunofluorescence assays (IFAs) for detecting hMPV in respiratory samples have limited reliability with a sensitivity and false-negative predictive value of 58.1% and approximately 17.8%, respectively. In this study, hMPV was measured in 91 clinical respiratory samples (55 sputum and 36 nasopharyngeal aspirate samples), which were obtained from children under three years of age, utilizing our previously developed high-throughput metal-enhanced fluorescence (MEF)-based biosensor (HT-MEFB). The sensitivity of HT-MEFB for hMPV detection in the 91 samples was improved by up to 77.4% compared with that obtained with IFAs, and the specificity of HT-MEFB for hMPV detection was 91.7%. In addition, the specificity and accuracy obtained after the selection of 55 sputum samples as the analyzed specimen reached 92.3% and 90.9%, respectively. Thus, in terms of accuracy, high throughput, and sensitivity, HT-MEFB exhibits considerable potential for hMPV detection in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.