Abstract

Abstract Forest biomass is a source of renewable energy that can contribute to meeting international targets for reducing greenhouse gas emissions. However, removing forest harvesting residues may cause important nutrient losses. Because negative effects of increased nutrient removal are not systematic, forest managers need tools for soil sensitivity assessment, to decide whether they can or not increase biomass harvesting without impairing long term forest productivity and health. This study follows two goals: (i) define forest ecosystem sensitivity indicators derived from soil physico-chemical analyses and (ii) build and test a simplified tool that predicts such soil sensitivity. After screening international literature, nutrient concentration in the topsoil was chosen as the simplest and currently most accurate indicator of soil sensitivity. With a consolidated database on French forest soils, we built diagnostic keys that predict soil sensitivity using only five parameters: humus form, topsoil texture, depth of CaCO3 apparition, ecological region, and rooting depth. We performed a statistical evaluation of the simplified tool on independent data sets and evaluated it in the field with potential users. As compared with the existing French forest soils sensitivity indicator, our diagnosis tool displayed lower high and low sensitivities classification errors and allowed to differentiate sensitivity into five elemental ones (Ca, Mg, K, P and N). All participating end users agreed with the necessity of such indicator and appreciated the simplicity of diagnosis with our tool. This study shows a complete research and development process, from the translation of scientific knowledge into an indicator of sustainable forest management to the simplification for assimilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.