Abstract
Fetal arrhythmias frequently co-occur with congenital heart disease in fetuses. The peaks observed in M-mode fetal echocardiograms serve as pivotal diagnostic markers for fetal arrhythmias. However, speckles, artifacts, and noise pose notable challenges for accurate image analysis. While current deep learning networks mainly overlook cardiac cyclic information, this study concentrated on the integration of such features, leveraging contextual constraints derived from cardiac cyclical features to improve diagnostic accuracy. This study proposed a novel deep learning architecture for diagnosing fetal arrhythmias. The architecture presented a loss function tailored to the cardiac cyclical information and formulated a diagnostic algorithm for classifying fetal arrhythmias. The training and validation processes utilized a dataset comprising 4440 patches gathered from 890 participants. Incorporating cyclic loss significantly enhanced the performance of deep learning networks in predicting peak points for diagnosing fetal arrhythmia, resulting in improvements ranging from 7.11% to 14.81% in F1-score across different network combinations. Particularly noteworthy was the 18.2% improvement in the F1-score for the low-quality group. Additionally, the precision of diagnosing fetal arrhythmia across four categories exhibited improvement, with an average improvement rate of 20.6%. This study introduced a cyclic loss mechanism based on the cardiac cycle information. Comparative evaluations were conducted using baseline methods and state-of-the-art deep learning architectures with the fetal echocardiogram dataset. These evaluations demonstrated the proposed framework's superior accuracy in diagnosing fetal arrhythmias. It is also crucial to note that further external testing is essential to assess the model's generalizability and clinical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.