Abstract
Objective:
 Many modifiable risk factors affect the onset of coronary artery disease (CAD), a condition that is extremely common throughout the globe. Predictive models created using machine learning (ML) algorithms may help physicians identify CAD earlier and may lead to better results. The goal of this project was to use ML algorithms to predict CAD in patients.
 
 Methods:
 The gathered dataset of UCI heart disease was used in this study to evaluate a variety of machine learning methods to predict CAD. Just the most crucial aspects of the hypothesis testing method were kept. Support vector machines (SVM) were used in a comparative analysis employing a variety of assessment measures.
 
 Results:
 All machine learning methods achieved accuracy levels of at least 80%, with the SVM algorithm obtaining accuracy levels of at least 90%. Predictive ML models had high diagnostic relevance in CAD, as seen by the SVM model's high recall (0.9), which is was the highest of all the models.
 
 Conclusion:
 The findings of the current study demonstrated that, independent of the measures used to evaluate machine learning models, feature selection has a significant impact on performance. Finding the most useful features is thus crucial. SVM was chosen as the top model based on the features we considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.