Abstract
The Colorectal cancer leads to more number of death in recent years. The diagnosis of Colorectal cancer as early is safe to treat the patient. To identify and treat this type of cancer, Colonoscopy is applied commonly. The feature selection based methods are proposed which helps to choose the subset variables and to attain better prediction. An Imperialist Competitive Algorithm (ICA) is proposed which helps to select features in identification of colon cancer and its treatment. Also K-Nearest Neighbor (KNN) classifier is used to retain a minimal Euclidean distance between the feature of query vector and all the data in the nature of prototype training. Experimental results have proved that the proposed method is superior when compared to other methods in its metrics of performance. Better accuracy is achieved by the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.