Abstract
Frequency response analysis (FRA) method is one of the most important diagnostic methods for detecting the faults of transformer winding. To accurately diagnose axial displacement (AD) and disc space variation (DSV) faults of transformer winding, in this paper, a diagnosis method which combines the FRA method with the random forest algorithm (RF) is proposed to diagnose the fault types of winding. First, an experimental winding model with AD and DSV faults is set. Then, a plenty of FRA measurements are conducted to acquire the FRA dataset of the winding. Furthermore, the variation features of the FRA traces are extracted by using some typical statistical indices. Finally, the trained RF model is used to classify AD and DSV winding faults. The average accuracy rates of this RF model for classification of AD and DSV faults are obtained by random 1000 tests. The results show that the proposed method is feasible, and it has very high accuracy for diagnosing and identifying the AD and DSV winding faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.