Abstract

To reduce the risk of atherosclerotic disease, it is necessary to not only diagnose the presence of atherosclerotic plaques but also assess the vulnerability risk of plaques. Accurate detection of the reactive oxygen species (ROS) level at plaque sites represents a reliable way to assess the plaque vulnerability. Herein, through a simple one-pot reaction, two near-infrared (NIR) fluorescent dyes, one is ROS responsive and the other is inert to ROS, are coassembled in an amphiphilic amino acid-assembled nanoparticle. In the prepared NIR fluorescent amino acid nanoparticle (named FANP), the fluorescent properties and ROS-responsive behaviors of the two fluorescent dyes are well maintained. Surface camouflage through red blood cell membrane (RBCM) encapsulation endows the finally obtained FANP@RBCM nanoprobe with not only further reduced cytotoxicity and improved biocompatibility but also increased immune escape capability, prolonged blood circulation time, and thus enhanced accumulation at atherosclerotic plaque sites. In vitro and in vivo experiments demonstrate that FANP@RBCM not only works well in probing the occurrence of atherosclerotic plaques but also enables plaque vulnerability assessment through the accurate detection of the ROS level at plaque sites in a reliable ratiometric mode, thereby holding great promise as a versatile tool for the diagnosis and risk assessment of atherosclerotic disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.