Abstract

Mungbean (Vigna radiata L. Wilczek var. radiata) is an important food crop cultivated on over 6 Mha throughout the world. Its short duration of 55–70 days, capacity to fix atmospheric nitrogen, and exceptional grain nutritional profile makes the crop a staple for smallholder and subsistence farmers. In Australia, mungbean is grown as a high-value export crop and established as a main summer rotation for dryland farmers. A major threat to the integrity of the industry is halo blight, a bacterial disease leading to necrotic lesions surrounded by a chlorotic halo that stunts and ultimately kills the plant. Caused by Pseudomonas savastanoi pv. phaseolicola, this seed-borne disease is extremely difficult to control, resulting in significant yield loss and production volatility. The challenge of managing halo blight is exacerbated by a wide host range that includes many legume and weed species, and the presence of multiple epidemiologically significant strains. Molecular technologies could play a pivotal role in addressing these issues. This review synthesises current and emerging technologies to develop improved management strategies for the control of halo blight in mungbean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call