Abstract

Estimating the vertical velocity (w) in the oceanic upper-layers is a key issue for understanding the cold tongue development in the Eastern Equatorial Atlantic. In this methodological paper, we develop an expanded and general formulation of the vertical velocity equation based on the primitive equation (PE) system, in order to gain new insight into the physical processes responsible for the Equatorial and Angola upwellings. This approach is more accurate for describing the real ocean than simpler considerations based on just the wind-driven patterns of surface layer divergence. The w-sources/forcings are derived from the PE w-equation and diagnosed from a realistic ocean simulation of the Equatorial Atlantic. Sources of w are numerous and express the high complexity of terms related to the turbulent momentum flux, to the circulation and to the mass fields, some of them depending explicitly on w and others not. The equatorial upwelling is found to be mainly induced by the (i) the zonal turbulent momentum flux, (ii) the curl of turbulent momentum flux and (iii) the imbalance between the circulation and the pressure fields. The Angola upwelling in the eastern part of the basin is controlled by strong curl of turbulent momentum flux. A strong cross-regulation is evidenced between the w-forcings independent of w and dependent on w, which suggests an equatorial balanced-dynamics. The w-forcing depending on w represents the negative feedback of the ocean to the w-forcing independent of w: in the equatorial band, this adjustment is led by non-linear processes and by vortex stretching outside.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call