Abstract

Two-dimensional magnetic insulators exhibit a plethora of competing ground states, such as ordered (anti)ferromagnets, exotic quantum spin liquid states with topological order and anyonic excitations, and random singlet phases emerging in highly disordered frustrated magnets. Here we show how single spin qubits, which interact directly with the low-energy excitations of magnetic insulators, can be used as a diagnostic of magnetic ground states. Experimentally tunable parameters, such as qubit level splitting, sample temperature, and qubit-sample distance, can be used to measure spin correlations with energy and wavevector resolution. Such resolution can be exploited, for instance, to distinguish between fractionalized excitations in spin liquids and spin waves in magnetically ordered states, or to detect anyonic statistics in gapped systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.