Abstract
The use of radial basis function networks (RBFNs) for diagnosis and classification is discussed. Even though RBFNs can be trained quickly compared to backpropagation networks, the training effort is still significant for large-scale diagnosis problems. Rho-Net, an architecture that decomposes the dynamic classification problem in two ways, making such training tractable, is presented. The first decomposition reduces the amount of training data needed for any stage of the training process by constructing separate networks for each fault class. The second decomposition reduces the dimensionality of the input space by incorporating temporal information at the output of the network, instead of as a temporal window at the input of the net. Application of Rho-Nets to chemical process simulation is discussed. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.