Abstract

The electron temperature (Te) and average ionization (Z) of nearly Fermi-degenerate, direct-drive, shock-heated, and compressed plastic planar foils were investigated using noncollective spectrally resolved x-ray scattering on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Plastic (CH) and Br-doped CH foils were driven with six beams, having an overlapped intensity of ∼1×1014W∕cm2 and generating ∼15 Mbar pressure in the foil. The plasma conditions of the foil predicted with a one-dimensional (1-D) hydrodynamics code are Te∼10eV, Z∼1, mass density ρ∼4g∕cm3, and electron density ne∼3×1023cm−3. The uniformly compressed portion of the target was probed with 9.0-keV x rays from a ZnHeα backlighter created with 18 additional tightly focused beams. The x rays scattered at either 90° or 120° were dispersed with a Bragg crystal spectrometer and recorded with an x-ray framing camera. An examination of the scattered x-ray spectra reveals that an upper limit of Z∼2 and Te=20eV are inferred from the spectral line shapes of the elastic Rayleigh and inelastic Compton components. Low average ionizations (i.e., Z<2) cannot be accurately diagnosed in this experiment due to the difficulties in distinguishing delocalized valence and free electrons. Trace amounts of Br in the CH foil (i.e., 2% atomic concentration) are shown to increase the sensitivity of the noncollective, spectrally resolved x-ray scattering to changes in the average ionization. The experimentally inferred electron temperatures are comparable to the 1-D predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call