Abstract

There has been a number of cases involving deteriorated concrete structures in North America where there has been considerable controversy surrounding the respective contributions of alkali–silica reaction (ASR) and delayed ettringite formation (DEF) to the observed damage. The problem arises because the macroscopic symptoms of distress are not unequivocal and microscopical examinations of field samples often reveal evidence of both processes making it difficult to separate the individual contributions. This paper presents the results of an investigation of a number of concrete columns carrying a raised expressway in North America; prior studies had implicated both DEF and ASR as possible causes of deterioration. Although the columns were not deliberately heat-cured, it is estimated that the peak internal temperature would have exceeded 70 °C and perhaps even 80 °C, in some cases. The forensic investigation included scanning electron microscopy with energy-dispersive X-ray analysis and expansion testing of cores extracted from the structure. Small-diameter cores stored in limewater expanded significantly (0.3 to 1.3%) and on the basis of supplementary tests on laboratory-produced concrete specimens it was concluded that expansion under such conditions is caused by DEF as the conditions of the test will not sustain ASR. In at least one column, DEF was diagnosed as the sole contributory cause of damage with no evidence of any contribution from ASR or any other deterioration process. In other cases, both ASR and DEF were observed to have contributed to the apparent damage. Of the columns examined, only concrete containing fly ash appeared to be undamaged. The results of this study confirm that, under certain conditions, the process of DEF (acting in isolation of other processes) can result in significant deterioration of cast-in-place reinforced concrete structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.