Abstract

We review the methodologies used to quantify climate feedbacks in coupled models. The method of radiative kernels is outlined and used to illustrate the dependence of lapse rate, water vapor, surface albedo, and cloud feedbacks on (1) the length of the time average used to define two projected climate states and (2) the time separation between the two climate states. Except for the shortwave component of water vapor feedback, all feedback processes exhibit significant high-frequency variations and intermodel variability of feedback strengths for sub-decadal time averages. It is also found that the uncertainty of lapse rate, water vapor, and cloud feedback decreases with the increase in the time separation. The results suggest that one can substantially reduce the uncertainty of cloud and other feedbacks with the accumulation of accurate, long-term records of satellite observations; however, several decades may be required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.