Abstract

Solid-state polymer electrolytes (SPEs) attract great interest in developing high-performance yet reliable solid-state batteries. However, understanding of the failure mechanism of the SPE and SPE-based solid-state batteries remains in its infancy, posing a great barrier to practical solid-state batteries. Herein, the high accumulation and clogging of "dead" lithium polysulfides (LiPS) on the interface between the cathode and SPE with intrinsic diffusion limitation is identified as a critical failure cause of SPE-based solid-state Li-S batteries. It induces a poorly reversible chemical environment with retarded kinetics on the cathode-SPE interface and in bulk SPEs, starving the Li-S redox in solid-state cells. This observation is different from the case in liquid electrolytes with free solvent and charge carriers, where LiPS dissolve but remain alive for electrochemical/chemical redox without interfacial clogging. Electrocatalysis demonstrates the feasibility of tailoring the chemical environment in diffusion-restricted reaction media for reducing Li-S redox failure in the SPE. It enables Ah-level solid-state Li-S pouch cells with a high specific energy of 343Whkg-1 on the cell level. This work may shed new light on the understanding of the failure mechanism of SPE for bottom-up improvement of solid-state Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call